Basic Intersection Cohomology

Krakow, June 2023

- Singular Riemannian foliations
- Finiteness. Duality.
- Minimality.
- Gysin sequence.

```
J.I. Royo Prieto
M. Saralegi Aranguren (Orator)
R.Wolak
```

 (Bilbao, Spain)
 (Lens, France)
 (Krakow, Poland)

Introduction

- Framework :
\mathscr{F} singular Riemannian foliation on a manifold M. The leaves are parallel and their dimensions may vary.
- Example: $\Phi: G \times M \rightarrow M$ isometric Lie group action.

$$
\text { Leaves }=\text { Orbits }=G / G_{x}
$$

- Goal : Study the cohomologies groups of M and the leaf space M / \mathscr{F}, and investigate their connections. Also, study the properties of this cohomology.
- Example: If $\Phi: \mathbb{R} \times M \rightarrow M$ is an isometric flow w/o fixed points we have

$$
\cdots \longrightarrow H^{k}(M / \mathscr{F}) \longrightarrow H^{k}(M) \longrightarrow H^{k-1}(M / \mathscr{F}) \longrightarrow H^{k+1}(M / \mathscr{F}) \longrightarrow \cdots,
$$

the Gysin sequence.

Basic Cohomology $H^{*}(M / \mathscr{F})$

Definition

\triangle The orbit space M / \mathscr{F} can be very wild. For a flow with irrational slope on the torus T we have $T / \mathscr{F}=\mathbb{R} / \mathbb{Q}$.

- Compact case (leaves): M / \mathscr{F} is a manifold, Sataké manifold, stratified pseudomanifold.
- Basic differential forms:

$$
\Omega^{*}(M / \mathscr{F})=\left\{\omega \in \Omega^{*}(M) \mid i_{X} \omega=i_{X} d \omega=0\right\}
$$

where X is any vector field on M tangent to \mathscr{F}.

- The associated cohomology is the basic cohomology $H^{*}(M / \mathscr{F})$.
- Compact case (leaves)

$$
H^{*}(M / \mathscr{F})=H_{\text {sing }}^{*}(M / \mathscr{F}, \mathbb{R}) .
$$

Basic Cohomology $H^{*}(M / \mathscr{F})$

Example

$$
\begin{gathered}
t \cdot\left(z_{0}, z_{1}, z_{2}\right)=\left(e^{t i} z_{0}, e^{t i} z_{1}, e^{t i} z_{2}\right) \\
e=\operatorname{dix} \mu \in \Omega^{2}\left(S^{5} / \mathscr{F}\right) \text { Euler form }
\end{gathered}
$$

- $\Phi: \mathbb{R} \times S^{5} \rightarrow S^{5}$
$H^{*}\left(S^{5} / \mathscr{F}\right)=\mathbb{R}\left[e, e^{2}\right]$
- $\Phi: \mathbb{R} \times S^{6} \rightarrow S^{6}$
$H^{*}\left(S^{6} / \mathscr{F}\right)=\mathbb{R}\left[e \wedge d t, e^{2} \wedge d t\right]$

$$
x \cdot\left(z_{0}, z_{1}, z_{2}, t\right)=\left(e^{x i} z_{0}, e^{x i} z_{1}, e^{x i} z_{2}, t\right)
$$

- First example: (Regular) Riemannian Foliation. Poincaré duality: $e \wedge e=$ volume form.
- Second example: Singular Riemannian Foliation. Poincaré duality: $(e \wedge d t) \wedge 0=0$!

Properties of the basic cohomology of a Riemannian Foliation

- $H^{*}(M / \mathscr{F})$ is a topological invariant.
(El Kacimi-Nicolau)
- $H^{*}(M / \mathscr{F})$ is finite dimensional.
(El Kacimi-Sergiescu-Hector)
- $H^{*}(M / \mathscr{F})$ verifies the Poincaré duality
(El Kacimi-Hector)
- $H^{n}(M / \mathscr{F})$ characterizes the geometrical minimality of \mathscr{F}.
(Masa, Álvarez)

Properties of the basic cohomology of a Singular Riemannian Foliation

- $H^{*}(M / \mathscr{F})$ is a topological invariant.
- $H^{*}(M / \mathscr{F})$ is finite dimensional.
- $H^{*}(M / \mathscr{F})$ does not verify the Poincaré duality.
- There do not exist minimal SRFs.

Geometrical presentation of a of a singular Riemannian foliation (SRF)

- Leaves. The dimensions may vary.
- Stratification.

Gluing together leaves with identical dimension. Each stratum is a (regular) Riemannian foliation.

- Example. $\quad \Phi: T^{2} \times \mathbb{C} P^{2} \rightarrow \mathbb{C} P^{2}: \quad(u, v) \cdot\left[z_{1}, z_{2}, z_{3}\right]=\left[u z_{1}, v z_{2}, z_{3}\right]$

$$
\begin{array}{ll}
\text { Strata } \\
3 \text { points } & \text { 0-dimensional leaves } \\
3 \text { cylinders } & \text { 1-dimensional leaves } \\
\mathbb{C} P^{2} \backslash \Sigma & \text { 2-dimensional leaves. }
\end{array}
$$

Geometrical presentation of a SRF

Local structure

- Each stratum (S, \mathscr{F}) is a Riemannian foliation. They are arranged conically. Regular stratum (leaves of greater dimension) is dense.
- A point $x \in S \subset M$ possesses a neighborhood:

$$
\left(\mathbb{R}^{s}, \mathscr{H}\right) \times\left(\mathrm{c} S^{m-s-1}, \mathrm{c} \mathscr{G}\right)
$$

$\star\left(\mathbb{R}^{s}, \mathscr{H}\right)$ is a foliated chart of $x \in S$ in (S, \mathscr{F}).
$\star c S^{m-s-1}$ is the cone $S^{m-s-1} \times\left[0,1\left[/ S^{m-s-1} \times\{0\}\right.\right.$.
Here, $s=\operatorname{dim} S$.
$\star\left(S^{m-s-1}, \mathscr{G}\right)$ is a SRF w/o 0-dimensional leaves. Link.
The apex is ϑ. Here, $m=\operatorname{dim} M$.

- Leaves:

$$
H \times\{\vartheta\}, H \times G \times\{t\}
$$

$$
H \in \mathscr{H}, G \in \mathscr{G}, t \in] 0,1[.
$$

- Strata :

$$
\left.\mathbb{R}^{s} \times\{\vartheta\} \quad, \quad \mathbb{R}^{s} \times Q \times\right] 0,1[
$$

Basic Intersection Cohomology (BIC)

- Goal : Recover Poincaré Duality.
- Tool : Intersection Cohomology (Goresky-MacPherson) with differential forms (Brylinski).

$$
\begin{gathered}
\Omega^{*}(M / \mathscr{F})=\left\{\omega \in \Omega^{*}(M) \mid i_{X} \omega=i_{X} d \omega=0\right\} . \\
\Omega_{\bar{p}}^{*}(M / \mathscr{F})=\left\{\omega \in \Omega^{*}((M-\Sigma) / \mathscr{F}) \mid\|\omega\| \leq \bar{p},\|d \omega\| \leq \bar{p}\right\} .
\end{gathered}
$$

* \bar{p} perversity.
* $\|\omega\|$ perverse degree.
- Poincaré Duality

$$
H_{\bar{p}}^{*}(M / \mathscr{F}) \cong H_{D \bar{p}}^{n-*}(M / \mathscr{F})
$$

$n=\operatorname{codim}_{\mathrm{M}} \mathscr{F}, \bar{p}$ and $D \bar{p}$ are dual perversities.

- A perversity \bar{p} is a number $\bar{p}(S)$ for ech stratum S.
- Perverse degree. Local notion.
$\star(M, \mathscr{F})=(S, \mathscr{H}) \times\left(c S^{a}, c^{\mathscr{G}}\right)$.
$\star \omega \in \Omega^{*}\left(S \times\left(S^{a} \backslash \Sigma\right) \times\right] 0,1[)$.
$\star \omega(t)=\alpha_{1}(t) \wedge \beta_{1}(t)+\alpha_{2}(t) \wedge \beta_{2}(t) \wedge d t$ with $\alpha_{\bullet}(t) \in \Omega^{*}(S), \beta_{\bullet}(t) \in \Omega^{*}\left(S^{a}\right)$.
$\star\|\omega\|_{S}=\operatorname{deg} \beta_{1}(0)$. Thom-Mather system.

Basic Intersection Cohomology (BIC)

Example

$\Phi: \mathbb{R} \times S^{6} \rightarrow S^{6}$

$$
\begin{aligned}
t \cdot\left(z_{0}, z_{1}, z_{2}, x\right) & =\left(e^{t i} z_{0}, e^{t i} z_{1}, e^{t i} z_{2}, x\right) \\
\mathbb{S}^{6} \backslash \Sigma & \left.=S^{5} \times\right]-1,1[
\end{aligned}
$$

$\Sigma=\{$ North, South $\}$
$\bar{p} \in \overline{\mathbb{Z}}=\mathbb{Z} \cup\{-\infty, \infty\}$.
$e \in \Omega^{2}\left(S^{5} / \mathscr{F}\right) \subset \Omega^{2}\left(\left(S^{6} \backslash \Sigma\right) / \mathscr{F}\right)$

$$
\|e\|=\|t e\|=2,\|d t\|=\|e \wedge d t\|=-\infty,\|1\|=\|t\|=0
$$

$H_{\bar{p}}^{k}\left(S^{5} / \mathscr{F}\right)$	$\overline{-\infty}$	$\bar{p}=\overline{0}$	$\bar{p}=\overline{2}$	$\bar{p}=\bar{\infty}$
$k=0$	0	\mathbb{R}	\mathbb{R}	\mathbb{R}
$k=1$	$\mathbb{R}[d t]$	0	0	0
$k=2$	0	0	$\mathbb{R}[e]$	$\mathbb{R}[e]$
$k=3$	$\mathbb{R}[e \wedge d t]$	$\mathbb{R}[e \wedge d t]$	0	0
$k=4$	0	0	0	$\mathbb{R}\left[e^{2}\right]$
$k=5$	$\mathbb{R}\left[e^{2} \wedge d t\right]$	$\mathbb{R}\left[e^{2} \wedge d t\right]$	$\mathbb{R}\left[e^{2} \wedge d t\right]$	0
	$H^{*}\left(\left(S^{5}, \Sigma\right) / \mathscr{F}\right)$	$H^{*}\left(S^{5} / \mathscr{F}\right)$		$H^{*}\left(\left(S^{5} \backslash \Sigma\right) / \mathscr{F}\right)$

Basic Intersection Cohomology (BIC)

Theorems

- The BIC of the foliation \mathscr{F} determined by an isometric action on a compact manifold is finite dimensional.
- The BIC of the foliation \mathscr{F} determined by an isometric action on a compact manifold verify the Poincaré Duality:

$$
H_{\bar{p}}^{*}(M / \mathscr{F}) \cong H_{\bar{q}}^{n-*}(M / \mathscr{F})
$$

with $n=\operatorname{codim} \mathscr{F}, \bar{p}+\bar{q}=n-2$.

Tautness of a Riemannian foliation (M, \mathscr{F})

M compact

- The leaves of \mathscr{F} are minimal submanifolds, relatively to a bundle-like metric μ.
- $H^{n}(M / \mathscr{F}) \neq 0$, under orientation hypothesis
- $0=\left[\kappa_{\mu}\right] \in H^{1}(M / \mathscr{F})$, Álvarez Class,

Tautness of a Riemannian foliation $(S, \mathscr{X}) \quad S$ stratum of a $\operatorname{SRF}(X, \mathscr{X})$

- The leaves of (S, \mathscr{X}) are minimal submanifolds, relatively to a bundle-like metric μ.
- $H_{c}^{n_{S}}(S / \mathscr{X}) \neq 0$, under orientation hypothesis, $n_{S}=\operatorname{codim}_{S} \mathscr{X}$.
- $0=\left[\kappa_{\mu}\right] \in H^{1}(S / \mathscr{X})$, Álvarez Class
- $\exists \boldsymbol{\kappa} \in H^{1}(X / \mathscr{X})$ gathering information from all strata
$\star \kappa=0$ (cohomologically taut)
* each stratum (S, \mathscr{X}) is taut
* $(M \backslash \Sigma, \mathscr{X})$ is taut
- X simply connected $\Longrightarrow(X, \mathscr{X})$ cohomologically taut.

Gysin Sequences

- $\Phi: \mathbb{R} \times M \rightarrow M$ isometric action w/o fixed points

$$
\cdots \longrightarrow H^{k}(M / \mathscr{F}) \longrightarrow H^{k}(M) \longrightarrow H^{k-1}(M / \mathscr{F}) \xrightarrow{\wedge[e]} H^{k+1}(M / \mathscr{F}) \longrightarrow \cdots
$$

- $\Phi: \mathbb{R} \times M \rightarrow M$ isometric action

$$
\begin{gathered}
\cdots \longrightarrow H^{k}(M / \mathscr{F}) \longrightarrow H^{k}(M) \longrightarrow H^{k-1}(M / \mathscr{F}, F) \xrightarrow{\wedge[e]} H^{k+1}(M / \mathscr{F}) \longrightarrow H_{\bar{p}}^{k}(M / \mathscr{F}) \longrightarrow H^{k}(M) \longrightarrow H_{\bar{p}-\overline{2}}^{k-1}(M / \mathscr{F}) \xrightarrow{\wedge[e]} H_{\bar{p}}^{k+1}(M / \mathscr{F}) \longrightarrow \cdots, \\
\cdots \longrightarrow{ }^{\longrightarrow},
\end{gathered}
$$

Gysin Sequences

Standard cohomology

- $\Phi: S^{3} \times M \rightarrow M$ semi-free
dim leaf $=0,3$

$$
\cdots \longrightarrow H^{k}\left(M / S^{3}\right) \longrightarrow H^{k}(M) \longrightarrow H^{k-3}\left(M / S^{3}, F\right) \xrightarrow{\wedge[e]} H^{k+1}\left(M / S^{3}\right)
$$

- $\Phi: S^{3} \times M \rightarrow M \quad \operatorname{dim}$ leaf $=0,2,3$

$$
\cdots \rightarrow H^{k}\left(M / S^{3}\right) \rightarrow H^{k}(M) \rightarrow H^{k-3}\left(M / S^{3}, \Sigma / S^{3}\right) \oplus\left(H^{k-2}\left(M^{S^{1}}\right)\right)^{-\mathbb{Z}_{2}} \rightarrow H^{k+1}\left(M / S^{3}\right) \rightarrow \cdots
$$

Gysin Spectral Sequence

BIC

We have the Leray-Spectral sequence

$$
{ }_{\bar{p}} E_{r}^{i, j} \Rightarrow H^{i+j}(M)
$$

The second term is given by

$$
\overline{\bar{p}}_{\bar{p}}^{i, j}= \begin{cases}H_{\bar{p}}^{i}\left(M / S^{3}\right) & \text { if } j=0 \\ \bigoplus_{S \in \mathscr{I}_{1}} H_{\overline{P_{S}}}^{i-2 p_{S}}(\bar{S})^{-(-1)^{P_{S}}} & \text { if } j=2 \\ H_{\bar{p}-\bar{e}}^{i}\left(M / S^{3}\right) & \text { if } j=3 .\end{cases}
$$

It is 0 otherwise.

Gysin Braid

BIC

THANKS FOR YOUR ATTENTION!

